Lecture Notes 15: Normalized Gradient Descent and Non-Convex Variance Reduction

Instructor: Ashok Cutkosky

We have just seen how to perform variance reduction for finite-sum convex problems. It turns out that variance reduction is in some sense even more powerful for non-convex problems. In the convex case, we are only able to see gains over SGD in the special case that $\mathcal{L}(\mathbf{w})$ is has the form of a finite sum. In contrast, for non-convex problems we will be able to obtain improved convergence to critical points without this extra restriction. For reference, recall that SGD obtained the guarantee:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla \mathcal{L}(\mathbf{w}_t)\|^2] \le O\left(\frac{1}{\sqrt{T}}\right)$$

Thus, by selecting an iterate $\hat{\mathbf{w}}$ at random from $\mathbf{w}_1, \ldots, \mathbf{w}_T$, we obtain:

$$\mathbb{E}[\|\nabla \mathcal{L}(\hat{\mathbf{w}})\|] \le O\left(\frac{1}{T^{1/4}}\right)$$

By using variance reduction, we will be able to significantly improve this to:

$$\mathbb{E}[\|\nabla \mathcal{L}(\hat{\mathbf{w}})\|] \le O\left(\frac{1}{T^{1/3}}\right)$$

This rate discovered simultaneously by two different groups in 2018 [1, 2], and in 2020 this was shown to be the optimal rate [3].

Our presentation of the results will look slightly more similar to [1], but somewhat more streamlined borrowing ideas from [4].

In order to derive the algorithm with a good balance of intuition we will need to consider *normalized* updates for SGD. To start, let's look at the following scheme:

$$\mathbf{m}_{1} = \nabla \ell(\mathbf{w}_{1}, z_{1})$$
$$\mathbf{m}_{t} = (1 - \alpha)\mathbf{m}_{t-1} + \alpha \nabla \ell(\mathbf{w}_{t}, z_{t})$$
$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \eta \frac{\mathbf{m}_{t}}{\|\mathbf{m}_{t}\|}$$

We'll call these updates normalized gradient descent with momentum.

This is almost identical to our previously studied momentum methods, but now instead of writing $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{m}_t$, we normalized the momentum term in the update. This makes the following important identity true:

$$\|\mathbf{w}_{t+1} - \mathbf{w}_1\| = \eta$$
 for all t

This identity is extremely useful for analysis. Recall that when we previously analyzed momentum in the non-convex setting, we tried to view momentum as a form of averaging, and the primary difficulty was trading off some bias caused by the fact that \mathbf{w}_t is changing over time. Accuratly measuring this bias was very technically challenging because there was a complicated relationship between the speed that \mathbf{w}_t is changing and the amount of bias. In the end, we never actually really quantified how much this bias was, but we were able to sidestep the problem through a tricky use of a potential function. With normalized updates, we are going to be able to completely avoid all of these difficulties.

In particular, we have the following result:

Lemma 1. Suppose that \mathcal{L} is an *H*-smooth function and $\mathbb{E}[\|\nabla \ell(\mathbf{w}, z) - \nabla \mathcal{L}(\mathbf{w})\|^2] \leq \sigma^2$ for all \mathbf{w} . Then using the normalized gradient descent with momentum updates, we have:

$$\mathbb{E}[\|\mathbf{m}_t - \nabla \mathcal{L}(\mathbf{w}_t)\|] \le (1 - \alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H\eta}{\alpha}$$

Proof. Let's start by obtaining an expanded expression for \mathbf{m}_t . To compactify the notation, set $\mathbf{g}_t = \nabla \ell(\mathbf{w}_t, z_t)$. Further, let's define:

$$\epsilon_t = \mathbf{m}_t - \nabla \mathcal{L}(\mathbf{w}_t)$$
$$r_t = \mathbf{g}_t - \nabla \mathcal{L}(\mathbf{w}_t)$$

Notice that $\mathbb{E}[r_t] = 0$ and $\mathbb{E}[||r_t||^2] \le \sigma^2$, so that by Jensen inequality, $\mathbb{E}[||r_t||] \le \sigma$.

Then we have:

$$\mathbf{m}_{t} = (1 - \alpha)\mathbf{m}_{t-1} + \alpha \mathbf{g}_{t}$$

$$\epsilon_{t} = (1 - \alpha)(\mathbf{m}_{t-1} - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha(\mathbf{g}_{t} - \nabla \mathcal{L}(\mathbf{w}_{t}))$$

$$= (1 - \alpha)(\mathbf{m}_{t-1} - \nabla \mathcal{L}(\mathbf{w}_{t-1})) + (1 - \alpha)(\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha r_{t}$$

$$= (1 - \alpha)\epsilon_{t-1} + (1 - \alpha)(\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha r_{t}$$

Now, we have generated a recursive expression for ϵ_t . Notice that the third term, αr_t , is zero in expectation, so we might hope that it has a small contribution to ϵ_t . The second term, is bounded by:

$$\|\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_t)\| \le H \|\mathbf{w}_{t-1} - \mathbf{w}_t\| = H\eta$$

So we can control it by setting η small. Notice that by using normalized updates, we have a very tight control over the difference of the gradients because we know *exactly* how big $\|\mathbf{w}_{t-1} - \mathbf{w}_t\|$ is.

Let's continue expanding the recursive expression for ϵ_t to see how we can leverage these intuitions:

$$\epsilon_t = (1 - \alpha)\epsilon_{t-1} + (1 - \alpha)(\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_t)) + \alpha r_t$$

= $(1 - \alpha)^2 \epsilon_{t-2} + (1 - \alpha)^2(\nabla \mathcal{L}(\mathbf{w}_{t-2}) - \nabla \mathcal{L}(\mathbf{w}_{t-1})) + \alpha(1 - \alpha)r_{t_1} + (1 - \alpha)(\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_t)) + \alpha r_t$

unrolling for t iterations:

$$= (1-\alpha)^{t-1}\epsilon_1 + \alpha(1-\alpha)^{t-2}r_2 + \dots + \alpha r_t + (1-\alpha)^{t-1}(\nabla \mathcal{L}(\mathbf{w}_1) - \nabla \mathcal{L}(\mathbf{w}_2)) + \dots + (1-\alpha)(\nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_t))$$

recall that $\mathbf{m}_1 = \mathbf{g}_1$ so that $\epsilon_1 = r_1$:

$$= (1 - \alpha)^{t-1} r_1 + \alpha (1 - \alpha)^{t-2} r_2 + \dots + \alpha (1 - \alpha) r_t + \sum_{\tau=1}^{t-1} (1 - \alpha)^{t-\tau} (\nabla \mathcal{L}(\mathbf{w}_{\tau}) - \nabla \mathcal{L}(\mathbf{w}_{\tau+1}))$$

$$= (1 - \alpha)^t r_1 + \alpha (1 - \alpha)^{t-1} r_1 + \dots + \alpha (1 - \alpha) r_t + \sum_{\tau=1}^{t-1} (1 - \alpha)^{t-\tau} (\nabla \mathcal{L}(\mathbf{w}_{\tau}) - \nabla \mathcal{L}(\mathbf{w}_{\tau+1}))$$

$$= (1 - \alpha)^t r_1 + \alpha \sum_{\tau=1}^t (1 - \alpha)^{t-\tau} r_\tau + \sum_{\tau=1}^{t-1} (1 - \alpha)^{t-\tau} (\nabla \mathcal{L}(\mathbf{w}_{\tau}) - \nabla \mathcal{L}(\mathbf{w}_{\tau+1}))$$

do a little reindexing to make the geometric series in the sums clearer:

$$= (1 - \alpha)^{t} r_{1} + \alpha \sum_{\tau=0}^{t} (1 - \alpha)^{\tau} r_{t-\tau} + \sum_{\tau=1}^{t-1} (1 - \alpha)^{\tau} (\nabla \mathcal{L}(\mathbf{w}_{t-\tau}) - \nabla \mathcal{L}(\mathbf{w}_{t-\tau+1}))$$

Now, observe that all of these terms are expected to be small: the first term is of course geometrically decaying in t, and the other terms involve geometric series of $(1 - \alpha)$. Let's make this concrete by taking expectations:

$$\begin{split} \mathbb{E}[\|\epsilon_t\|] &\leq (1-\alpha)^t \,\mathbb{E}[\|r_1\|] + \alpha \,\mathbb{E}\left[\left\|\sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau}\right\|\right] + \sum_{\tau=1}^{t-1} (1-\alpha)^\tau \,\mathbb{E}[\|\nabla \mathcal{L}(\mathbf{w}_{t-\tau}) - \nabla \mathcal{L}(\mathbf{w}_{t-\tau+1})\|] \\ &= (1-\alpha)^t \,\mathbb{E}[\|r_1\|] + \alpha \,\mathbb{E}\left[\left\|\sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau}\right\|\right] + \sum_{\tau=1}^{t-1} (1-\alpha)^\tau H\eta \\ &\leq (1-\alpha)^t \,\mathbb{E}[\|r_1\|] + \alpha \,\mathbb{E}\left[\left\|\sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau}\right\|\right] + \sum_{\tau=0}^\infty (1-\alpha)^\tau H\eta \\ &= (1-\alpha)^t \,\mathbb{E}[\|r_1\|] + \alpha \,\mathbb{E}\left[\left\|\sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau}\right\|\right] + \frac{H\eta}{\alpha} \\ &\leq (1-\alpha)^t \sigma + \alpha \,\mathbb{E}\left[\left\|\sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau}\right\|\right] + \frac{H\eta}{\alpha} \end{split}$$

Now, by Jensen inequality:

$$\mathbb{E}\left[\left\|\sum_{\tau=0}^{t}(1-\alpha)^{\tau}r_{t-\tau}\right\|\right] \leq \sqrt{\mathbb{E}\left[\left\|\sum_{\tau=0}^{t}(1-\alpha)^{\tau}r_{t-\tau}\right\|^{2}\right]}$$
$$\leq \sqrt{\mathbb{E}\left[\sum_{\tau=0}^{t}\sum_{\tau'=0}^{t}(1-\alpha)^{\tau\tau'}\langle r_{t-\tau}, r_{t-\tau'}\rangle\right]}$$

since $\mathbb{E}[\langle r_t, r'_t \rangle] = 0$ for $t \neq t'$ and $\mathbb{E}[||r_t||^2] \leq \sigma^2$:

$$\leq \sqrt{\sum_{\tau=0}^{t} (1-\alpha)^{2\tau} \sigma^2}$$
$$\leq \sigma \sqrt{\sum_{\tau=0}^{t} (1-\alpha)^{\tau}}$$
$$\leq \sigma \sqrt{\sum_{\tau=0}^{\infty} (1-\alpha)^{\tau}}$$
$$= \frac{\sigma}{\sqrt{\alpha}}$$

Thus, $\alpha \mathbb{E}\left[\left\|\sum_{\tau=0}^{t} (1-\alpha)^{\tau} r_{t-\tau}\right\|\right] \leq \sigma \sqrt{\alpha}$. So, putting all this together: $\mathbb{E}[\|\epsilon_t\|] \leq (1-\alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H}{2}$

$$[\epsilon_t \parallel] \le (1-\alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H\eta}{\alpha}$$

This Lemma tells us that, by setting α and η appropriately, we will be able to ensure that $\mathbf{m}_t \approx \nabla \mathcal{L}(\mathbf{w}_t)$ in expectation. Now, it remains to see how we can use this property. To do this, we'll need a variation on the lemma for biased gradient descent we established when analyzing SGD with momentum:

Lemma 2. Define $\epsilon_t = \mathbf{m}_t - \nabla \mathcal{L}(\mathbf{w}_t)$. Then we have:

$$\mathcal{L}(\mathbf{w}_{t+1}) \le \mathcal{L}(\mathbf{w}_t) - \frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{13\eta}{6} \|\epsilon_t\| + \frac{H\eta^2}{2}$$

Proof. By the smoothness property:

$$\mathcal{L}(\mathbf{w}_{t+1}) \leq \mathcal{L}(\mathbf{w}_t) - \eta \langle \nabla \mathcal{L}(\mathbf{w}_t), \frac{\mathbf{m}_t}{\|\mathbf{m}_t\|} \rangle + \frac{H\eta^2}{2} \\ = \mathcal{L}(\mathbf{w}_t) - \eta \left\langle \nabla \mathcal{L}(\mathbf{w}_t), \frac{\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t}{\|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\|} \right\rangle + \frac{H\eta^2}{2}$$

Now, let's consider two cases, either $\|\epsilon_t\| \ge \frac{1}{2} \|\nabla \mathcal{L}(\mathbf{w}_t)\|$ or not. If $\|\epsilon_t\| \ge \frac{1}{2} \|\nabla \mathcal{L}(\mathbf{w}_t)\|$, then:

$$\begin{split} -\left\langle \nabla \mathcal{L}(\mathbf{w}_t), \frac{\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t}{\|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\|} \right\rangle &\leq \|\nabla \mathcal{L}(\mathbf{w}_t)\| \\ &\leq 2\|\epsilon_t\| \\ &\leq -\frac{\|\nabla \mathcal{L}(\mathbf{w}_t)\|}{3} + \frac{13}{6}\|\epsilon_t\| \end{split}$$

Alternatively, if $\|\epsilon_t\| \leq \frac{1}{2} \|\nabla \mathcal{L}(\mathbf{w}_t)\|$:

$$\begin{split} \|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\| &\leq \frac{3}{2} \|\nabla \mathcal{L}(\mathbf{w}_t)\| \\ - \langle \nabla \mathcal{L}(\mathbf{w}_t), \epsilon_t \rangle &\leq \frac{1}{2} \|\nabla \mathcal{L}(\mathbf{w}_t)\|^2 \\ - \left\langle \nabla \mathcal{L}(\mathbf{w}_t), \frac{\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t}{\|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\|} \right\rangle &= -\frac{\|\nabla \mathcal{L}(\mathbf{w}_t)\|^2 + \langle \nabla \mathcal{L}(\mathbf{w}_t), \epsilon_t \rangle}{\|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\|} \\ &\leq -\frac{\|\nabla \mathcal{L}(\mathbf{w}_t)\|^2/2}{3\|\nabla \mathcal{L}(\mathbf{w}_2)\|/2} \\ &= -\frac{\|\nabla \mathcal{L}(\mathbf{w}_t)\|}{3} \end{split}$$

Therefore, either way we have:

$$-\eta \left\langle \nabla \mathcal{L}(\mathbf{w}_t), \frac{\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t}{\|\nabla \mathcal{L}(\mathbf{w}_t) + \epsilon_t\|} \right\rangle \le -\frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{13\eta}{6} \|\epsilon_t\|$$

from which the result follows.

Now, we're ready to put everything together and analyze this new version of momentum:

Theorem 3. Define $\Delta = \mathcal{L}(\mathbf{w}_1) - \mathcal{L}(\mathbf{w}_*)$. Suppose \mathcal{L} is H-smooth and \mathbf{g}_t has variance at most σ^2 . Then with $\alpha = \min\left(1, \frac{\sqrt{\Delta H}}{\sigma\sqrt{T}}\right) = O(1/\sqrt{T})$ and $\eta = \frac{\sqrt{\Delta \alpha}}{\sqrt{HT}} = O(1/T^{3/4})$,

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_t)\right\|\right] \le 24\sqrt{\Delta HT} + \frac{35(\Delta HT^3\sigma^2)^{1/4}}{2} + \frac{13\sqrt{T}}{2\sqrt{\Delta H}} \le O(T^{3/4})$$

Proof. Applying Lemma 2 followed by Lemma 1, we have:

$$\mathbb{E}[\mathcal{L}(\mathbf{w}_{t+1})] \leq \mathbb{E}[\mathcal{L}(\mathbf{w}_t) - \frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{13\eta}{6} \|\epsilon_t\| + \frac{H\eta^2}{2}]$$
$$\leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_t) - \frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{H\eta^2}{2} + \frac{13\eta}{6} \left((1-\alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H\eta}{\alpha}\right)\right]$$

telescoping over t:

$$\mathbb{E}[\mathcal{L}(\mathbf{w}_{T+1})] \leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta}{6} \left(T\sigma\sqrt{\alpha} + \frac{HT\eta}{\alpha} + \sum_{t=1}^T (1-\alpha)^t \sigma\right)\right]$$

$$\leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta}{6} \left(T\sigma\sqrt{\alpha} + \frac{HT\eta}{\alpha} + \frac{\sigma}{\alpha}\right)\right]$$

$$= \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta T\sigma\sqrt{\alpha}}{6} + \frac{13HT\eta^2}{6\alpha} + \frac{13\eta\sigma}{6\alpha}\right]$$

$$\leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{8HT\eta^2}{3\alpha} + \frac{13\eta T\sigma\sqrt{\alpha}}{6} + \frac{13\eta\sigma}{6\alpha}\right]$$

Now let's define $\Delta = \mathcal{L}(\mathbf{w}_1) - \mathcal{L}(\mathbf{w}_{\star})$ and rearrange:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_{t})\right\|\right] \leq \frac{3\Delta}{\eta} + \frac{8HT\eta}{\alpha} + \frac{13T\sigma\sqrt{\alpha}}{2} + \frac{13\sigma}{2\alpha}$$

Now, all that remains is to set α and η appropriately. This is a somewhat tricky task. To start, notice that the optimal value for η should balance the $\frac{3\Delta}{\eta}$ and the $\frac{8HT\eta}{\alpha}$ terms. From this, we can get (ignoring the constant factors) $\eta = \frac{\sqrt{\Delta\alpha}}{\sqrt{HT}}$ so that:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_{t})\right\|\right] \leq \frac{11\sqrt{\Delta HT}}{\sqrt{\alpha}} + \frac{13T\sigma\sqrt{\alpha}}{2} + \frac{13\sigma}{2\alpha}$$

Now, observe that unless $\alpha \leq \frac{1}{T^{2/3}}$, we should expect the $T\sqrt{\alpha}$ term to be larger than the $1/\alpha$ term. Then, to balance the first and second terms, we can set $\alpha = \frac{\sqrt{\Delta H}}{\sigma\sqrt{T}}$. This would yield:

$$\mathbb{E}\left[\sum_{t=1}^{T} \|\nabla \mathcal{L}(\mathbf{w}_t)\|\right] \le \frac{35(\Delta HT^3\sigma^2)^{1/4}}{2} + \frac{13\sqrt{T}}{2\sqrt{\Delta H}}$$

However, there is a subtlety: this value of α may not be allowed because we must have $\alpha \leq 1$. If it is not allowed, then $\frac{\sqrt{\Delta H}}{\sigma\sqrt{T}} \geq 1$, so that $\sigma \leq \frac{\sqrt{\Delta H}}{\sqrt{T}}$, and we we set $\alpha = 1$ to obtain:

$$\mathbb{E}\left[\sum_{t=1}^{T} \|\nabla \mathcal{L}(\mathbf{w}_t)\|\right] \le 11\sqrt{\Delta HT} + \frac{13T\sigma}{2} + \frac{13\sigma}{2}$$
$$\le 11\sqrt{\Delta HT} + 13\sqrt{\Delta HT}$$
$$\le 24\sqrt{\Delta HT}$$

Thus, with $\alpha = \min\left(1, \frac{\sqrt{\Delta H}}{\sigma\sqrt{T}}\right)$, we obtain:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_t)\right\|\right] \le 24\sqrt{\Delta HT} + \frac{35(\Delta HT^3\sigma^2)^{1/4}}{2} + \frac{13\sqrt{T}}{2\sqrt{\Delta H}} \le O(T^{3/4})$$

Now, this just recovers the standard SGD rate we've seen before. However, it turns out that a small tweak to formula will enable us to get the improved variance-reduction rate without too much extra work in the analysis.

1 Adding the Variance Reduction

The variance reduction scheme we will describe now is different than SVRG algorithm we saw earlier: we will not assume that the \mathcal{L} has a finite-sum form, and we will never have to evaluate a full batch (this is good, because if \mathcal{L} is not a finite-sum form it's not even possible to evaluate a full batch!). However, we will make the assumption the $\mathcal{L}(\mathbf{w}) = \mathbb{E}[\ell(\mathbf{w}, z)]$ where $\ell(\mathbf{w}, z)$ is *H*-smooth in \mathbf{w} for all *z*.

Now, our new variance-reduced momentum scheme will be the following:

$$\begin{split} \mathbf{m}_{1} &= \nabla \ell(\mathbf{w}_{1}, z_{1}) \\ \mathbf{m}_{t} &= (1 - \alpha)(\mathbf{m}_{t-1} + \nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \ell(\mathbf{w}_{t-1}, z_{t})) + \alpha \nabla \ell(\mathbf{w}_{t}, z_{t}) \\ \mathbf{w}_{t+1} &= \mathbf{w}_{t} - \eta \frac{\mathbf{m}_{t}}{\|\mathbf{m}_{t}\|} \end{split}$$

Let's call this normalized gradient descent with variance-reduced momentum.

This is almost the same as what we had previously, but now there is an extra $\nabla \ell(\mathbf{w}_t, z_t) - \nabla \ell(\mathbf{w}_{t-1}, z_t)$ added into the momentum update. Intuitively, this term is correcting some bias: since \mathbf{m}_{t-1} is an estimate for the gradient at $\nabla \mathcal{L}(\mathbf{w}_{t-1})$ rather than an $\nabla \mathcal{L}(\mathbf{w}_t)$, we picked up some bias terms when analyzing $\|\epsilon_t\|$ in Lemma 1. Since $\mathbb{E}[\nabla \ell(\mathbf{w}_t, z_t) - \nabla \ell(\mathbf{w}_{t-1}, z_t)] = \nabla \mathcal{L}(\mathbf{w}_t) - \nabla \mathcal{L}(\mathbf{w}_{t-1})$, adding this term to the \mathbf{m}_{t-1} is attempting to "de-bias" the momentum to mitigate this effect.

Let's see an analog of Lemma 1 for this new update:

Lemma 4. Suppose that $\ell(\mathbf{w}, z)$ is an *H*-smooth function for all z and $\mathbb{E}[||\nabla \ell(\mathbf{w}, z) - \nabla \mathcal{L}(\mathbf{w})||^2] \leq \sigma^2$ for all \mathbf{w} . Then using the normalized gradient descent with variance-reduced momentum updates, we have:

$$\mathbb{E}[\|\mathbf{m}_t - \nabla \mathcal{L}(\mathbf{w}_t)\|] \le (1 - \alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H\eta}{\sqrt{\alpha}}$$

Proof. The proof is extremely similar to Lemma 1. Set $\mathbf{g}_t = \nabla \ell(\mathbf{w}_t, z_t)$. Define:

$$\epsilon_t = \mathbf{m}_t - \nabla \mathcal{L}(\mathbf{w}_t)$$
$$r_t = \mathbf{g}_t - \nabla \mathcal{L}(\mathbf{w}_t)$$
$$\delta_t = \mathbf{w}_t - \mathbf{w}_{t-1}$$

Now, we have:

$$\begin{aligned} \mathbf{m}_{t} &= (1-\alpha)(\mathbf{m}_{t-1} + \nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \ell(\mathbf{w}_{t-1}, z_{t})) + \alpha \nabla \ell(\mathbf{w}_{t}, z_{t}) \\ \epsilon_{t} &= (1-\alpha)(\mathbf{m}_{t-1} \nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \ell(\mathbf{w}_{t-1}, z_{t}) - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha (\nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \mathcal{L}(\mathbf{w}_{t})) \\ &= (1-\alpha)(\mathbf{m}_{t-1} - \nabla \mathcal{L}(\mathbf{w}_{t-1})) + (1-\alpha)(\nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \ell(\mathbf{w}_{t-1}, z_{t}) + \nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha r_{t} \\ &= (1-\alpha)\epsilon_{t-1} + (1-\alpha)(\nabla \ell(\mathbf{w}_{t}, z_{t}) - \nabla \ell(\mathbf{w}_{t-1}, z_{t}) + \nabla \mathcal{L}(\mathbf{w}_{t-1}) - \nabla \mathcal{L}(\mathbf{w}_{t})) + \alpha r_{t} \end{aligned}$$

Now, notice the critical difference from the proof of Lemma 1: the middle term here is now also zero in expectation! Let's define

$$s_t = \nabla \ell(\mathbf{w}_{t+1}, z_{t+1}) - \nabla \ell(\mathbf{w}_t, z_{t+1}) + \nabla \mathcal{L}(\mathbf{w}_t) - \nabla \mathcal{L}(\mathbf{w}_{t+1})$$

then we have $\mathbb{E}[s_t] = 0$, and

$$\mathbb{E}[\|s_t\|^2] \le \mathbb{E}[\|\nabla \ell(\mathbf{w}_{t+1}, z_{t+1}) - \nabla \ell(\mathbf{w}_t, z_{t+1})\|^2] \\ \le H^2 \|\mathbf{w}_{t+1} - \mathbf{w}_t\|^2 \\ = H^2 \eta^2$$

Now, let's proceed to unroll the recursion once again:

$$\epsilon_t = (1 - \alpha)^{t-1} \epsilon_1 + \alpha (1 - \alpha)^{t-2} r_2 + \dots + \alpha r_t + (1 - \alpha)^{t-1} s_1 + \dots + (1 - \alpha) s_{t-1}$$

recall that $\mathbf{m}_1 = \mathbf{g}_1$ so that $\epsilon_1 = r_1$:

$$= (1-\alpha)^{t-1}r_1 + \alpha(1-\alpha)^{t-1}r_1 + \dots + \alpha(1-\alpha)r_t + \sum_{\tau=1}^{t-1}(1-\alpha)^{t-\tau}s_{\tau}$$
$$= (1-\alpha)^t r_1 + \alpha \sum_{\tau=1}^t (1-\alpha)^{t-\tau}r_{\tau} + \sum_{\tau=1}^{t-1}(1-\alpha)^{t-\tau}s_{\tau}$$

do a little reindexing to make the geometric series in the sums clearer:

$$= (1-\alpha)^t r_1 + \alpha \sum_{\tau=0}^t (1-\alpha)^\tau r_{t-\tau} + \sum_{\tau=1}^{t-1} (1-\alpha)^\tau s_\tau$$

Now, let's take norms and expectations. The first two terms are bounded identically to in the proof of Lemma 1.

$$\mathbb{E}[\|\epsilon_t\|] \le (1-\alpha)^t \sigma + \sigma \sqrt{\alpha} + \mathbb{E}\left[\left\|\sum_{\tau=1}^{t-1} (1-\alpha)^\tau s_\tau\right\|\right]$$

Now, for this last term the argument is again familiar:

$$\mathbb{E}\left[\left\|\sum_{\tau=1}^{t-1} (1-\alpha)^{\tau} s_{\tau}\right\|\right] \leq \sqrt{\mathbb{E}\left[\left\|\sum_{\tau=1}^{t-1} (1-\alpha)^{\tau} s_{\tau}\right\|^{2}\right]}$$

using $\mathbb{E}[s_t] = 0$:

$$\leq \sqrt{\sum_{\tau=1}^{t-1} (1-\alpha)^{2\tau} \mathbb{E}[\|s_{\tau}\|^2]}$$

using $\mathbb{E}[\|s_t\|^2] \leq H^2 \eta^2$:

$$\leq H\eta \sqrt{\sum_{\tau=1}^{t-1} (1-\alpha)^{2\tau}}$$
$$\leq \frac{H\eta}{\sqrt{\alpha}}$$

So over all we have obtained:

$$\mathbb{E}[\|\epsilon_t\|] \le (1-\alpha)^t \sigma + \sigma \sqrt{\alpha} + \frac{H\eta}{\sqrt{\alpha}}$$

Compare this result with Lemma 1: notice that the $\frac{\eta}{\alpha}$ term has improved to $\frac{\eta}{\sqrt{\alpha}}$.

Now, look back to the proof of Lemma 2: this Lemma actually made zero assumptions whatsoever about how \mathbf{m}_t was generated. Thus, it applies equally well with our new improved way to generate \mathbf{m}_t and so we can applying directly analogously to the proof of Theorem 3 to show:

Theorem 5. Define $\Delta = \mathcal{L}(\mathbf{w}_1) - \mathcal{L}(\mathbf{w}_{\star})$. Suppose $\ell(\mathbf{w}, z)$ is *H*-smooth for all z and $\nabla \ell(\mathbf{w}, z)$ has variance at most σ^2 . Then with $\alpha = 1/T^{2/3}$ and $\eta = \frac{\sqrt{\Delta\sqrt{\alpha}}}{\sqrt{HT}} = O(1/T^{2/3})$,

$$\mathbb{E}\left[\sum_{t=1}^{T} \|\nabla \mathcal{L}(\mathbf{w}_t)\|\right] \le 11\sqrt{\Delta H}T^{2/3} + 13\sigma T^{2/3}$$
$$\le O(T^{2/3})$$

Proof. Applying Lemma 2 followed by Lemma 1, we have:

$$\mathbb{E}[\mathcal{L}(\mathbf{w}_{t+1})] \leq \mathbb{E}[\mathcal{L}(\mathbf{w}_t) - \frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{13\eta}{6} \|\epsilon_t\| + \frac{H\eta^2}{2}] \\ \leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_t) - \frac{\eta}{3} \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{H\eta^2}{2} + \frac{13\eta}{6} \left((1-\alpha)^t \sigma + \sigma\sqrt{\alpha} + \frac{H\eta}{\sqrt{\alpha}}\right)\right]$$

telescoping over t:

$$\mathbb{E}[\mathcal{L}(\mathbf{w}_{T+1})] \leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta}{6} \left(T\sigma\sqrt{\alpha} + \frac{HT\eta}{\sqrt{\alpha}} + \sum_{t=1}^T (1-\alpha)^t \sigma\right)\right]$$

$$\leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta}{6} \left(T\sigma\sqrt{\alpha} + \frac{HT\eta}{\sqrt{\alpha}} + \frac{\sigma}{\alpha}\right)\right]$$

$$= \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{HT\eta^2}{2} + \frac{13\eta T\sigma\sqrt{\alpha}}{6} + \frac{13HT\eta^2}{6\sqrt{\alpha}} + \frac{13\eta\sigma}{6\alpha}\right]$$

$$\leq \mathbb{E}\left[\mathcal{L}(\mathbf{w}_1) - \frac{\eta}{3} \sum_{t=1}^T \|\nabla \mathcal{L}(\mathbf{w}_t)\| + \frac{8HT\eta^2}{3\sqrt{\alpha}} + \frac{13\eta T\sigma\sqrt{\alpha}}{6} + \frac{13\eta\sigma}{6\alpha}\right]$$

Rearranging:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_{t})\right\|\right] \leq \frac{3\Delta}{\eta} + \frac{8HT\eta}{\sqrt{\alpha}} + \frac{13T\sigma\sqrt{\alpha}}{2} + \frac{13\sigma}{2\alpha}$$

Now, again we need only to choose the values for η and α . Balancing the first two terms with $\eta = \frac{\sqrt{\Delta\sqrt{\alpha}}}{\sqrt{HT}}$ yields:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_{t})\right\|\right] \leq 11 \frac{\sqrt{\Delta HT}}{\alpha^{1/4}} + \frac{13T\sigma\sqrt{\alpha}}{2} + \frac{13\sigma}{2\alpha}$$

Now, set $\alpha = \frac{1}{T^{2/3}}$ to obtain:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_{t})\right\|\right] \leq 11\sqrt{\Delta H}T^{2/3} + 13\sigma T^{2/3}$$

If you want to be a little more careful, we can set $\alpha = \min\left(1, \frac{(\Delta H)^{2/3}}{\sigma^{4/3}T^{2/3}}\right)$. Then, if $\alpha = 1$ we have $\sigma \leq 1$

$$\mathbb{E}\left[\sum_{t=1}^{T} \left\|\nabla \mathcal{L}(\mathbf{w}_t)\right\|\right] \le 34\sqrt{\Delta HT}$$

while otherwise we have:

$$\mathbb{E}\left[\sum_{t=1}^{T} \|\nabla \mathcal{L}(\mathbf{w}_t)\|\right] \le \frac{35(\Delta H\sigma)^{1/3}T^{2/3}}{2} + \frac{13\sigma^{7/3}T^{2/3}}{2(\Delta H)^{2/3}}$$

References

[1] C Fang et al. "SPIDER: Near-optimal non-convex optimization via stochastic path integrated differential estimator". In: *Advances in Neural Information Processing Systems* 31 (2018), p. 689.

- [2] Dongruo Zhou, Pan Xu, and Quanquan Gu. "Stochastic Nested Variance Reduction for Nonconvex Optimization". In: *Advances in Neural Information Processing Systems* 31 (2018), pp. 3921–3932.
- [3] Yossi Arjevani et al. "Lower bounds for non-convex stochastic optimization". In: *arXiv preprint arXiv:1912.02365* (2019).
- [4] Ashok Cutkosky and Harsh Mehta. "Momentum improves normalized sgd". In: *International Conference on Machine Learning*. PMLR. 2020, pp. 2260–2268.