
Lecture Notes 15: Normalized Gradient Descent and Non-Convex
Variance Reduction

Instructor: Ashok Cutkosky

We have just seen how to perform variance reduction for finite-sum convex problems. It turns out that variance
reduction is in some sense even more powerful for non-convex problems. In the convex case, we are only able to see
gains over SGD in the special case that L(w) is has the form of a finite sum. In contrast, for non-convex problems we
will be able to obtain improved convergence to critical points without this extra restriction. For reference, recall that
SGD obtained the guarantee:

1

T

T∑
t=1

E[‖∇L(wt)‖2] ≤ O
(

1√
T

)
Thus, by selecting an iterate ŵ at random from w1, . . . ,wT , we obtain:

E[‖∇L(ŵ)‖] ≤ O
(

1

T 1/4

)
By using variance reduction, we will be able to significantly improve this to:

E[‖∇L(ŵ)‖] ≤ O
(

1

T 1/3

)
This rate discovered simultaneously by two different groups in 2018 [1, 2], and in 2020 this was shown to be the
optimal rate [3].

Our presentation of the results will look slightly more similar to [1], but somewhat more streamlined borrowing
ideas from [4].

In order to derive the algorithm with a good balance of intuition we will need to consider normalized updates for
SGD. To start, let’s look at the following scheme:

m1 = ∇`(w1, z1)

mt = (1− α)mt−1 + α∇`(wt, zt)

wt+1 = wt − η
mt

‖mt‖

We’ll call these updates normalized gradient descent with momentum.
This is almost identical to our previously studied momentum methods, but now instead of writing wt+1 = wt −

ηmt, we normalized the momentum term in the update. This makes the following important identity true:

‖wt+1 −w1‖ = η for all t

This identity is extremely useful for analysis. Recall that when we previously analyzed momentum in the non-convex
setting, we tried to view momentum as a form of averaging, and the primary difficulty was trading off some bias
caused by the fact that wt is changing over time. Accuratly measuring this bias was very technically challenging
because there was a complicated relationship between the speed that wt is changing and the amount of bias. In the
end, we never actually really quantified how much this bias was, but we were able to sidestep the problem through a
tricky use of a potential function. With normalized updates, we are going to be able to completely avoid all of these
difficulties.

In particular, we have the following result:
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Lemma 1. Suppose that L is an H-smooth function and E[‖∇`(w, z) −∇L(w)‖2] ≤ σ2 for all w. Then using the
normalized gradient descent with momentum updates, we have:

E[‖mt −∇L(wt)‖] ≤ (1− α)tσ + σ
√
α+

Hη

α

Proof. Let’s start by obtaining an expanded expression for mt. To compactify the notation, set gt = ∇`(wt, zt).
Further, let’s define:

εt = mt −∇L(wt)

rt = gt −∇L(wt)

Notice that E[rt] = 0 and E[‖rt‖2] ≤ σ2, so that by Jensen inequality, E[‖rt‖] ≤ σ.
Then we have:

mt = (1− α)mt−1 + αgt

εt = (1− α)(mt−1 −∇L(wt)) + α(gt −∇L(wt))

= (1− α)(mt−1 −∇L(wt−1)) + (1− α)(∇L(wt−1)−∇L(wt)) + αrt

= (1− α)εt−1 + (1− α)(∇L(wt−1)−∇L(wt)) + αrt

Now, we have generated a recursive expression for εt. Notice that the third term, αrt, is zero in expectation, so we
might hope that it has a small contribution to εt. The second term, is bounded by:

‖∇L(wt−1)−∇L(wt)‖ ≤ H‖wt−1 −wt‖ = Hη

So we can control it by setting η small. Notice that by using normalized updates, we have a very tight control over the
difference of the gradients because we know exactly how big ‖wt−1 −wt‖ is.

Let’s continue expanding the recursive expression for εt to see how we can leverage these intuitions:

εt = (1− α)εt−1 + (1− α)(∇L(wt−1)−∇L(wt)) + αrt

= (1− α)2εt−2 + (1− α)2(∇L(wt−2)−∇L(wt−1)) + α(1− α)rt1 + (1− α)(∇L(wt−1)−∇L(wt)) + αrt

unrolling for t iterations:

= (1− α)t−1ε1 + α(1− α)t−2r2 + · · ·+ αrt + (1− α)t−1(∇L(w1)−∇L(w2)) + · · ·+ (1− α)(∇L(wt−1)−∇L(wt))

recall that m1 = g1 so that ε1 = r1:

= (1− α)t−1r1 + α(1− α)t−2r2 + · · ·+ α(1− α)rt +

t−1∑
τ=1

(1− α)t−τ (∇L(wτ )−∇L(wτ+1))

= (1− α)tr1 + α(1− α)t−1r1 + · · ·+ α(1− α)rt +

t−1∑
τ=1

(1− α)t−τ (∇L(wτ )−∇L(wτ+1))

= (1− α)tr1 + α

t∑
τ=1

(1− α)t−τrτ +

t−1∑
τ=1

(1− α)t−τ (∇L(wτ )−∇L(wτ+1))

do a little reindexing to make the geometric series in the sums clearer:

= (1− α)tr1 + α

t∑
τ=0

(1− α)τrt−τ +

t−1∑
τ=1

(1− α)τ (∇L(wt−τ )−∇L(wt−τ+1))
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Now, observe that all of these terms are expected to be small: the first term is of course geometrically decaying in t,
and the other terms involve goemetric series of (1− α). Let’s make this concrete by taking expectations:

E[‖εt‖] ≤ (1− α)t E[‖r1‖] + αE

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]

+

t−1∑
τ=1

(1− α)τ E[‖∇L(wt−τ )−∇L(wt−τ+1)‖]

= (1− α)t E[‖r1‖] + αE

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]

+

t−1∑
τ=1

(1− α)τHη

≤ (1− α)t E[‖r1‖] + αE

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]

+

∞∑
τ=0

(1− α)τHη

= (1− α)t E[‖r1‖] + αE

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]

+
Hη

α

≤ (1− α)tσ + αE

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]

+
Hη

α

Now, by Jensen inequality:

E

[∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥
t∑

τ=0

(1− α)τrt−τ

∥∥∥∥∥
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≤

√√√√E

[
t∑

τ=0

t∑
τ ′=0

(1− α)ττ ′〈rt−τ , rt−τ ′〉

]

since E[〈rt, r′t〉] = 0 for t 6= t′ and E[‖rt‖2] ≤ σ2:

≤

√√√√ t∑
τ=0

(1− α)2τσ2

≤ σ

√√√√ t∑
τ=0

(1− α)τ

≤ σ

√√√√ ∞∑
τ=0

(1− α)τ

=
σ√
α

Thus, αE
[∥∥∥∑t

τ=0(1− α)τrt−τ

∥∥∥] ≤ σ√α. So, putting all this together:

E[‖εt‖] ≤ (1− α)tσ + σ
√
α+

Hη

α

This Lemma tells us that, by setting α and η appropriately, we will be able to ensure that mt ≈ ∇L(wt) in
expectation. Now, it remains to see how we can use this property. To do this, we’ll need a variation on the lemma for
biased gradient descent we established when analyzing SGD with momentum:

Lemma 2. Define εt = mt −∇L(wt). Then we have:

L(wt+1) ≤ L(wt)−
η

3
‖∇L(wt)‖+

13η

6
‖εt‖+

Hη2

2
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Proof. By the smoothness property:

L(wt+1) ≤ L(wt)− η〈∇L(wt),
mt

‖mt‖
〉+

Hη2

2

= L(wt)− η
〈
∇L(wt),

∇L(wt) + εt
‖∇L(wt) + εt‖

〉
+
Hη2

2

Now, let’s consider two cases, either ‖εt‖ ≥ 1
2‖∇L(wt)‖ or not. If ‖εt‖ ≥ 1

2‖∇L(wt)‖, then:

−
〈
∇L(wt),

∇L(wt) + εt
‖∇L(wt) + εt‖

〉
≤ ‖∇L(wt)‖

≤ 2‖εt‖

≤ −‖∇L(wt)‖
3

+
13

6
‖εt‖

Alternatively, if ‖εt‖ ≤ 1
2‖∇L(wt)‖:

‖∇L(wt) + εt‖ ≤
3

2
‖∇L(wt)‖

−〈∇L(wt), εt〉 ≤
1

2
‖∇L(wt)‖2

−
〈
∇L(wt),

∇L(wt) + εt
‖∇L(wt) + εt‖

〉
= −‖∇L(wt)‖2 + 〈∇L(wt), εt〉

‖∇L(wt) + εt‖

≤ − ‖∇L(wt)‖2/2
3‖∇L(w2)‖/2

= −‖∇L(wt)‖
3

Therefore, either way we have:

−η
〈
∇L(wt),

∇L(wt) + εt
‖∇L(wt) + εt‖

〉
≤ −η

3
‖∇L(wt)‖+

13η

6
‖εt‖

from which the result follows.

Now, we’re ready to put everything together and analyze this new version of momentum:

Theorem 3. Define ∆ = L(w1) − L(w?). Suppose L is H-smooth and gt has variance at most σ2. Then with

α = min
(

1,
√

∆H
σ
√
T

)
= O(1/

√
T ) and η =

√
∆α√
HT

= O(1/T 3/4),

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 24

√
∆HT +

35(∆HT 3σ2)1/4

2
+

13
√
T

2
√

∆H

≤ O(T 3/4)

Proof. Applying Lemma 2 followed by Lemma 1, we have:

E[L(wt+1)] ≤ E[L(wt)−
η

3
‖∇L(wt)‖+

13η

6
‖εt‖+

Hη2

2
]

≤ E

[
L(wt)−

η

3
‖∇L(wt)‖+

Hη2

2
+

13η

6

(
(1− α)tσ + σ

√
α+

Hη

α

)]
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telescoping over t:

E[L(wT+1)] ≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13η

6

(
Tσ
√
α+

HTη

α
+

T∑
t=1

(1− α)tσ

)]

≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13η

6

(
Tσ
√
α+

HTη

α
+
σ

α

)]

= E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13ηTσ
√
α

6
+

13HTη2

6α
+

13ησ

6α

]

≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
8HTη2

3α
+

13ηTσ
√
α

6
+

13ησ

6α

]

Now let’s define ∆ = L(w1)− L(w?) and rearrange:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 3∆

η
+

8HTη

α
+

13Tσ
√
α

2
+

13σ

2α

Now, all that remains is to set α and η appropriately. This is a somewhat tricky task. To start, notice that the optimal
value for η should balance the 3∆

η and the 8HTη
α terms. From this, we can get (ignoring the constant factors) η =

√
∆α√
HT

so that:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 11

√
∆HT√
α

+
13Tσ

√
α

2
+

13σ

2α

Now, observe that unless α ≤ 1
T 2/3 , we should expect the T

√
α term to be larger than the 1/α term. Then, to balance

the first and second terms, we can set α =
√

∆H
σ
√
T

. This would yield:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 35(∆HT 3σ2)1/4

2
+

13
√
T

2
√

∆H

However, there is a subtlety: this value of α may not be allowed because we must have α ≤ 1. If it is not allowed,
then

√
∆H
σ
√
T
≥ 1, so that σ ≤

√
∆H√
T

, and we we set α = 1 to obtain:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 11

√
∆HT +

13Tσ

2
+

13σ

2

≤ 11
√

∆HT + 13
√

∆HT

≤ 24
√

∆HT

Thus, with α = min
(

1,
√

∆H
σ
√
T

)
, we obtain:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 24

√
∆HT +

35(∆HT 3σ2)1/4

2
+

13
√
T

2
√

∆H

≤ O(T 3/4)

Now, this just recovers the standard SGD rate we’ve seen before. However, it turns out that a small tweak to
formula will enable us to get the improved variance-reduction rate without too much extra work in the analysis.
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1 Adding the Variance Reduction
The variance reduction scheme we will describe now is different than SVRG algorithm we saw earlier: we will not
assume that the L has a finite-sum form, and we will never have to evaluate a full batch (this is good, because if L
is not a finite-sum form it’s not even possible to evaluate a full batch!). However, we will make the assumption the
L(w) = E[`(w, z)] where `(w, z) is H-smooth in w for all z.

Now, our new variance-reduced momentum scheme will be the following:

m1 = ∇`(w1, z1)

mt = (1− α)(mt−1 +∇`(wt, zt)−∇`(wt−1, zt)) + α∇`(wt, zt)

wt+1 = wt − η
mt

‖mt‖

Let’s call this normalized gradient descent with variance-reduced momentum.
This is almost the same as what we had previously, but now there is an extra ∇`(wt, zt) − ∇`(wt−1, zt) added

into the momentum update. Intuitively, this term is correcting some bias: since mt−1 is an estimate for the gradi-
ent at ∇L(wt−1) rather than an ∇L(wt), we picked up some bias terms when analyzing ‖εt‖ in Lemma 1. Since
E[∇`(wt, zt)−∇`(wt−1, zt)] = ∇L(wt)−∇L(wt−1), adding this term to the mt−1 is attempting to “de-bias” the
momentum to mitigate this effect.

Let’s see an analog of Lemma 1 for this new update:

Lemma 4. Suppose that `(w, z) is an H-smooth function for all z and E[‖∇`(w, z) − ∇L(w)‖2] ≤ σ2 for all w.
Then using the normalized gradient descent with variance-reduced momentum updates, we have:

E[‖mt −∇L(wt)‖] ≤ (1− α)tσ + σ
√
α+

Hη√
α

Proof. The proof is extremely similar to Lemma 1. Set gt = ∇`(wt, zt). Define:

εt = mt −∇L(wt)

rt = gt −∇L(wt)

δt = wt −wt−1

Now, we have:

mt = (1− α)(mt−1 +∇`(wt, zt)−∇`(wt−1, zt)) + α∇`(wt, zt)

εt = (1− α)(mt−1∇`(wt, zt)−∇`(wt−1, zt)−∇L(wt)) + α(∇`(wt, zt)−∇L(wt))

= (1− α)(mt−1 −∇L(wt−1)) + (1− α)(∇`(wt, zt)−∇`(wt−1, zt) +∇L(wt−1)−∇L(wt)) + αrt

= (1− α)εt−1 + (1− α)(∇`(wt, zt)−∇`(wt−1, zt) +∇L(wt−1)−∇L(wt)) + αrt

Now, notice the critical difference from the proof of Lemma 1: the middle term here is now also zero in expectation!
Let’s define

st = ∇`(wt+1, zt+1)−∇`(wt, zt+1) +∇L(wt)−∇L(wt+1)

then we have E[st] = 0, and

E[‖st‖2] ≤ E[‖∇`(wt+1, zt+1)−∇`(wt, zt+1)‖2]

≤ H2‖wt+1 −wt‖2

= H2η2

Now, let’s proceed to unroll the recursion once again:

εt = (1− α)t−1ε1 + α(1− α)t−2r2 + · · ·+ αrt + (1− α)t−1s1 + · · ·+ (1− α)st−1
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recall that m1 = g1 so that ε1 = r1:

= (1− α)t−1r1 + α(1− α)t−1r1 + · · ·+ α(1− α)rt +

t−1∑
τ=1

(1− α)t−τsτ

= (1− α)tr1 + α

t∑
τ=1

(1− α)t−τrτ +

t−1∑
τ=1

(1− α)t−τsτ

do a little reindexing to make the geometric series in the sums clearer:

= (1− α)tr1 + α

t∑
τ=0

(1− α)τrt−τ +

t−1∑
τ=1

(1− α)τsτ

Now, let’s take norms and expectations. The first two terms are bounded identically to in the proof of Lemma 1.

E[‖εt‖] ≤ (1− α)tσ + σ
√
α+ E

[∥∥∥∥∥
t−1∑
τ=1

(1− α)τsτ

∥∥∥∥∥
]

Now, for this last term the argument is again familiar:

E

[∥∥∥∥∥
t−1∑
τ=1

(1− α)τsτ

∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥
t−1∑
τ=1

(1− α)τsτ

∥∥∥∥∥
2


using E[st] = 0:

≤

√√√√t−1∑
τ=1

(1− α)2τ E[‖sτ‖2]

using E[‖st‖2] ≤ H2η2:

≤ Hη

√√√√t−1∑
τ=1

(1− α)2τ

≤ Hη√
α

So over all we have obtained:

E[‖εt‖] ≤ (1− α)tσ + σ
√
α+

Hη√
α

Compare this result with Lemma 1: notice that the η
α term has improved to η√

α
.

Now, look back to the proof of Lemma 2: this Lemma actually made zero assumptions whatsoever about how
mt was generated. Thus, it applies equally well with our new improved way to generate mt and so we can applying
directly analogously to the proof of Theorem 3 to show:

Theorem 5. Define ∆ = L(w1)−L(w?). Suppose `(w, z) is H-smooth for all z and∇`(w, z) has variance at most

σ2. Then with α = 1/T 2/3 and η =

√
∆
√
α√

HT
= O(1/T 2/3),

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 11

√
∆HT 2/3 + 13σT 2/3

≤ O(T 2/3)
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Proof. Applying Lemma 2 followed by Lemma 1, we have:

E[L(wt+1)] ≤ E[L(wt)−
η

3
‖∇L(wt)‖+

13η

6
‖εt‖+

Hη2

2
]

≤ E

[
L(wt)−

η

3
‖∇L(wt)‖+

Hη2

2
+

13η

6

(
(1− α)tσ + σ

√
α+

Hη√
α

)]
telescoping over t:

E[L(wT+1)] ≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13η

6

(
Tσ
√
α+

HTη√
α

+

T∑
t=1

(1− α)tσ

)]

≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13η

6

(
Tσ
√
α+

HTη√
α

+
σ

α

)]

= E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
HTη2

2
+

13ηTσ
√
α

6
+

13HTη2

6
√
α

+
13ησ

6α

]

≤ E

[
L(w1)− η

3

T∑
t=1

‖∇L(wt)‖+
8HTη2

3
√
α

+
13ηTσ

√
α

6
+

13ησ

6α

]

Rearranging:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 3∆

η
+

8HTη√
α

+
13Tσ

√
α

2
+

13σ

2α

Now, again we need only to choose the values for η and α. Balancing the first two terms with η =

√
∆
√
α√

HT
yields:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 11

√
∆HT

α1/4
+

13Tσ
√
α

2
+

13σ

2α

Now, set α = 1
T 2/3 to obtain:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 11

√
∆HT 2/3 + 13σT 2/3

If you want to be a little more careful, we can set α = min
(

1, (∆H)2/3

σ4/3T 2/3

)
. Then, if α = 1 we have σ ≤

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 34

√
∆HT

while otherwise we have:

E

[
T∑
t=1

‖∇L(wt)‖

]
≤ 35(∆Hσ)1/3T 2/3

2
+

13σ7/3T 2/3

2(∆H)2/3
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