
Lecture Notes 6: Adaptive Learning Rates I

Instructor: Ashok Cutkosky

Throughout these notes, we adopt the notation:

gt = ∇`(wt, zt)

to make the equations look a little simpler.

1 Adaptive Gradient Descent

Previously, we saw that the “optimal” learning rate for SGD is roughly min
(

1
H ,

√
∆

σ
√
TH

)
. This is nice in theory, but

in reality you probably don’t actually know the values for H or ∆ or σ or even T . We saw that it’s possible to avoid
needing to know T via a varying learning rate of ηt = O(1/

√
t) at the cost of a logarithmic factor, but how would we

be able to deal with the other unknown values?
This is objective of adaptive algorithms. Adaptive algorithms “adapt” to the problem at hand, achieving faster con-

vergence on “easier” problems while gracefully degrading on harder problems. Concretely, we can think of adaptive
algorithms as figuring out some parameters of the problem (such as σ of H) “on-the-fly”.

In the convex setting, this area has been heavily studied, and there are very sophisticated adaptive algorithms
available that can adapt to all sorts of different types of “easy” problems. See [1, 2, 3, 4] for some examples of such
algorithms. In the non-convex setting, however, things are a little less developed. Today we will discuss a way to adapt
well to σ, and to some extent H . There is still no good way to adapt to ∆.

1.1 Intuition for Adaptive Learning Rates
Let’s take a look at the learning rate setting we saw previously:

η = min

(
1

H
,

√
∆

σ
√
TH

)
A simple way to try to design an adaptive algorithm is to “guess” this value of η on the fly. To start, let’s make a

simplification: for large enough T , we should always expect the 1/
√
T part to be dominant, so let’s focus on estimating

σ
√
T .
Ignoring the other constants for now, we want to make a learning rate like

ηt =
c

σ
√
t

So now we need only estimate σ. How can we estimate the variance? The simplest method might be to try some
form of empirical estimate. Since the variance of a random quantity Z is E[‖Z‖2−‖E[Z]‖2], we could try to estimate
σ2 by:

σ2 ≈ 1

t

t∑
i=1

‖gi‖2 −

∥∥∥∥∥1

t

t∑
i=1

gi

∥∥∥∥∥
2

Or, we could use the slightly more advance unbiased estimate:

g =
1

t

t∑
i=1

giσ
2 ≈ 1

t− 1

t∑
i=1

‖gi − g‖2

1

where here gi = ∇`(wi, zi), the ith output of the stochastic gradient oracle.
However, it turns out that it will be much simpler algebraically to analyze instead the following estimate:

σ2 ≈ 1

t

t∑
i=1

‖gi‖2

This is a kind of “optimistic” guess for σ2: if the gradients ∇L(wt) are getting smaller, we might expect 1
t

∑t
i=1 gi

to also be small, and so these two estimates are nearly the same. This leaves us with the learning rate:

ηt =
c√∑t

i=1 ‖gi‖2

This is almost identical to the popular AdaGrad learning rate [2] that we will discuss more later.
Strangely, while the above learning rate can analyzed without too much struggle in the convex setting, in the non-

convex setting there is a technical issue in the algebra that makes it surprisingly difficult to work with. In order to
appreciate this technical issue, let us start our performing the analysis and see what might go wrong.

We might think to start with our standard bounds on smooth losses (e.g Lemma 6 in Notes 3), which tell us that:

E[L(wt+1)] ≤ E[L(wt)− 〈∇L(wt), ηtgt〉+
Hη2

t ‖gt‖2

2
]

= E[L(wt)]− E[ηt〈∇L(wt),gt〉] + E[
Hη2

t ‖gt‖2

2
]

Now, in the past we have simplified the term −E[ηt〈∇L(wt),gt〉] as −ηt E[〈∇L(wt),gt〉] = −ηt E[‖∇L(wt)‖2].
However, this was only possible because ηt was a deterministic quantity. In our current setting, ηt actually de-
pends on gt, and so we cannot simply pull it out of the expectation. In fact, [5] shows that is might actually be that
−E[ηt〈∇L(wt),gt〉] > 0, which suggests that the gradient step might actually make negative progress!

There are roughly two ways to deal with this. Probably the simplest way, as suggested in [5], is to simply change
the learning rate to:

ηt =
c√

ε2 +
∑t−1
i=1 ‖gi‖2

Note the two major differences here: the presence of ε, and the fact that the sum now only goes up to t − 1. The ε is
a small constant that is now necessary because otherwise η1 = ∞. The sum going only up to t− 1 fixes the problem
with expectations, because now ηt is independent of zt. As a result, we would have:

E[〈∇L(wt), ηt∇`(wt, zt)〉] = E[ηt E
zt

[〈∇L(wt),∇`(wt, zt)〉|zt]]

= E[ηt‖∇L(wt)‖2]

However, this is not the learning rate used in practice, so we will instead consider the following rate:

ηt =
c√

ε2 +
∑t
i=1 ‖gi‖2

Notice that while the ε is still there, the sum now again goes up to t, so that the above argument with expectations is
invalid. In the convex setting, the ε is not needed, but we will see that it actually plays a role in our analysis to get
around the expectation issues. In practice, the ε is usually added to avoid numerical instability issues: when computing
ηt, it might be that the first gradient is zero or very small simply by chance. As a result, we would have ηt =∞. Now,
technically, we always have:

‖ηtgt‖ ≤ c

so that it should not matter if g1 = 0, but when actually implementing this we will run into numerical issues (in the
worst case, you will get a divide by zero error), so the small ε is added to the denominator to avoid this. It just happens
as a happy coincidence to help in the theory as well.

2

2 Adaptive SGD Algorithm
So, to summarize, we are considering the following Algorithm:

Algorithm 1 Adaptive Stochastic Gradient Descent
Input: Initial Point w1, learning rates scaling c, small constant ε (e.g. 1e-4).
for t = 1 . . . T do

Sample zt ∼ Pz .
Set gt = ∇`(wt, zt).
Set ηt = c√

ε2+
∑t
i=1 ‖gi‖2

Set wt+1 = wt − ηtgt.
end for

We are able to prove the following general Theorem. Notice that this result applies to any sequence of learning
rates, not just the ones in Algorithm 1:

Theorem 1. Suppose L is an H-smooth function. Defining gt = ∇`(wt, zt), suppose that E[maxt≤T ‖gt‖] ≤ G`
(note this is true if ‖∇`(wt, zt)‖ ≤ G` with probability 1, but would be also implied by more technical conditions
such as subgaussianity). Further, suppose that L is GL-Lipschitz. Finally, let η1, . . . , ηT be any sequence of learning
rates such that (1) ηt ≥ 0 for all t, (2) η1 ≥ η2 ≥ · · · ≥ ηT and also (3) the sequence is “causal” in the sense that
ηt is not allowed to depend on gt+1,gt+2, . . . ,gT . Let η0 be a deterministic quantity such that η0 ≥ η1. Consider the
SGD update:

wt+1 = wt − ηtgt

Then we have:

E[L(wT+1)] ≤ E

[
L(w1)−

T∑
t=1

ηt−1‖∇L(wt)‖2 +
H

2

T∑
t=1

η2
t ‖gt‖2

]
+ η0GLG`

This Theorem is a somewhat technical-looking result, so before we prove it, let’s see what it implies about the
adaptive learning rate scheme we are using in Algorithm 1. To start with, notice that this learning rate scheme satisfies
the conditions of Theorem 1: the learning rates are monotonically decreasing, and ηt does not depend on gt+1 or later
values of gt. Further, we can set η0 = c

ε . For simplicity, let us suppose that ‖gt‖ ≤ G with probability 1 and just take
GL = G` = G. Thus, Theorem 1 tells us that:

E[L(wT+1)] ≤ E

[
L(w1)−

T∑
t=1

ηt‖∇L(wt)‖2 +
H

2

T∑
t=1

η2
t ‖gt‖2

]
+
cG2

ε

Now, let us do some back-of-the-envelope calculations to gain intuition for what this means. Note that these are NOT
CORRECT, but will be “nearly correct”, and we will make the arguments rigorous later.

First, let’s do some rearrangement and use the fact ηT ≤ ηt for all t:

E

[
T∑
t=1

ηT ‖∇L(wt)‖2
]
≤ E

[
∆ +

H

2

T∑
t=1

η2
t ‖gt‖2

]
+
cG2

ε

Next, let’s consider the sum

T∑
t=1

η2
t ‖gt‖2 = c2

T∑
t=1

‖gt‖2

ε2 +
∑t
i=1 ‖gt‖2

We will soon see that for roughly the same reasons that
∑T
t=1

1
t ≤ O(log(T)), this sum is O(c2 log(T/ε2)). Let’s just

pretend it is actually bounded by c2 log(T/ε2) for now. Then, we perform another technically-illegal operation: let’s

3

divide by ηT inside the expectations:

E

[
T∑
t=1

‖∇L(wt)‖2
]
≤ E

[
∆

ηT
+
c2 log(T/ε2)

ηT
+
cG2

εηT

]

= E

(∆

c
+ c log(T/ε2) +

G2

ε

)√√√√ε2 +

T∑
t=1

‖gt‖2


Now, let’s again make a leap of faith and assume that it will actually hold that

E

[
T∑
t=1

‖∇L(wt)‖2
]

= O(σ log(T)
√
T)

where σ2 ≥ E[‖gt−∇L(wt)‖2] for all t. Note that this is definitely not logically okay - we would need to prove this.
But just to get some intuition, let’s make this assumption and at least see that we don’t hit a contradiction. Now, we
have (using the bias-variance decomposition Proposition 4):

E

[
T∑
t=1

‖gt‖2
]

=

T∑
t=1

E[‖∇L(wt)‖2] + E[‖gt −∇L(wt)‖2]

= O(σ log(T)
√
T + σ2T) = O(σ2T)

where we’ve assume T is sufficiently large that σ log(T)
√
T ≤ σ2T . Further, by Jensen inequality:

E


√√√√ε2 +

T∑
t=1

‖gt‖2

 ≤
√√√√ε2 + E

[
T∑
t=1

‖gt‖2
]

≤ ε+O
(
σ
√
T
)

from which we are able to recover our assumption E
[∑T

t=1 ‖∇L(wt)‖2
]

= O(σ log(T)
√
T) by absorbing ∆, G and

ε into the big-Oh notation.
Now that we have this sketch for how to use the Theorem, let’s proceed to prove Theorem 1.

Proof of Theorem 1. As usual, be we begin by using our key result about smooth functions:

L(wt+1) ≤ L(wt)− ηt〈∇L(wt),gt〉+
H

2
η2
t ‖gt‖2

now, when we take expectations, the ηt〈∇L(wt),gt〉 will cause trouble since ηt depends on gt. So let’s instead write
in terms of ηt−1〈∇L(wt),gt〉:

= L(wt)− ηt−1〈∇L(wt),gt〉+ (ηt−1 − ηt)〈∇L(wt),gt〉+
H

2
η2
t ‖gt‖2

Iterating for all t:

L(wT+1) ≤ L(w1)−
T∑
t=1

ηt−1〈∇L(wt),gt〉+

T∑
t=1

(ηt−1 − ηt)〈∇L(wt),gt〉+

T∑
t=1

H

2
η2
t ‖gt‖2

using the fact that ηt is decreasing:

≤ L(w1)−
T∑
t=1

ηt−1〈∇L(wt),gt〉+ max
t≤T
|〈∇L(wt),gt〉|

T∑
t=1

(ηt−1 − ηt) +

T∑
t=1

H

2
η2
t ‖gt‖2

4

Using Cauchy-Schwarz:

≤ L(w1)−
T∑
t=1

ηt−1〈∇L(wt),gt〉+ max
t≤T
‖∇L(wt)‖max

t≤T
‖gt‖

T∑
t=1

(ηt−1 − ηt) +

T∑
t=1

H

2
η2
t ‖gt‖2

≤ L(w1)−
T∑
t=1

ηt−1〈∇L(wt),gt〉+ max
t≤T
‖∇L(wt)‖max

t≤T
‖gt‖η0 +

T∑
t=1

H

2
η2
t ‖gt‖2

Taking expectations:

E[L(wT+1)] ≤ E

[
L(w1)−

T∑
t=1

ηt−1〈∇L(wt),gt〉+GLG`η0 +

T∑
t=1

H

2
η2
t ‖gt‖2

]

Finally, we can pull GLG`η0 out of the expectation since this is actually a constant.

2.1 Convergence of Algorithm 1
Now that we have proven the technical result of Theorem 1, we can turn to formalizing the intuitive argument for how
this implies a convergence result for Algorithm 1. In order to do this, we will need the following important technical
Lemma:

Lemma 2. Suppose x0, . . . , xT are arbitrary non-negative values. And let f(x) : R → R be an arbitary decreasing
function. Then:

T∑
t=1

xtf

(
t∑
i=0

xi

)
≤
∫ ∑T

i=0 xi

x0

f(x) dx

Proof. Notice that since f is decreasing, for all intervals [a, b] we have:

(b− a)f(b) ≤
∫ b

a

f(x) dx

In particular:

xtf

(
t∑
i=0

xi

)
≤
∫ ∑t

i=0 xi∑t−1
i=0 xi

f(x) dx

T∑
t=1

xtf

(
t∑
i=0

xi

)
≤

T∑
t=1

∫ ∑t
i=0 xi∑t−1
i=0 xi

f(x) dx

=

∫ ∑T
i=0 xi

x0

f(x) dx

As an immediate corollary of this Theorem, we have:

T∑
t=1

‖gt‖2

ε2 +
∑t
i=1 ‖gt‖2

≤
∫ ∑T

t=1 ‖gt‖
2

ε2

dx

x

= log

(∑T
t=1 ‖gt‖2

ε2

)

Now, we are ready to state and prove the following:

5

Theorem 3. Suppose L isH-smooth andGL Lipschitz, and let ∆ = L(wt)−L(w?). Suppose E[maxt≤T ‖gt‖] ≤ G`
and E[‖gt −∇L(wt)‖2] ≤ σ2 for all t. Define

K =
∆

c
+
Hc log

(
T (G2

L+σ2)
ε2

)
2

+
GLG`
ε

= O(log(T))

Then Algorithm 1 guarantees:

1

T
E

[
T∑
t=1

‖∇L(wt)‖

]
≤ K

√
2 +
√
Kε√

T
+

√
Kσ

T 1/4

Proof. First, note that that by the bias-variance decomposition (Proposition 4), we have:

E[‖gt‖2] ≤ E[‖∇L(wt)‖2] + E[‖gt −∇L(wt)‖2]

≤ E[‖∇L(wt)‖2] + σ2

≤ G2
L + σ2 (1)

Applying Theorem 1, with η0 = c
ε , we have:

E[L(wT+1)] ≤ E

[
L(w1)−

T∑
t=1

ηt−1‖∇L(wt)‖2 +
H

2

T∑
t=1

η2
t ‖gt‖2

]
+
cGLG`
ε

Now, applying the definition of ηt and Lemma 2, we can see that

T∑
t=1

η2
t ‖gt‖2 = c2

T∑
t=1

‖gt‖2

ε2 +
∑t
i=1 ‖gt‖2

≤ c2 log

(∑T
t=1 ‖gt‖2

ε2

)

Taking expectations and using Jensen inequality:

E

[
T∑
t=1

η2
t ‖gt‖2

]
≤ c2 log

(
E[
∑T
t=1 ‖gt‖2]

ε2

)

Using equation (1):

≤ c2 log

(
T (G2

L + σ2)

ε2

)
Thus, we have:

E[L(wT+1)] ≤ E

[
L(w1)−

T∑
t=1

ηt−1‖∇L(wt)‖2
]

+
Hc2 log

(
T (G2

L+σ2)
ε2

)
2

+
cGLG`
ε

rearranging:

E

[
T∑
t=1

ηt−1‖∇L(wt)‖2
]
≤ E[L(w1)− L(wT+1)] +

Hc2 log
(
T (G2

L+σ2)
ε2

)
2

+
cGLG`
ε

using ηT ≤ ηt for all t:

E

[
T∑
t=1

ηT ‖∇L(wt)‖2
]
≤ ∆ +

Hc2 log
(
T (G2

L+σ2)
ε2

)
2

+
cGLG`
ε

6

Now, we come to a primary difficulty in the proof. In our sketch before, we just divided by ηT at this point. In previous
arguments this was fine, because in all our previous algorithms, ηT was just a deterministic constant. Now, however,
ηT is unfortunately a random variable, and so it is not allowed to divide it out from both sides. We will have to be a
bit more tricky. The key idea is to use Cauchy-Schwarz for random variables (see Proposition 6). In particular, if we
define random variables

A2 =

T∑
t=1

ηT ‖∇L(wt)‖2

B2 =
1

ηT

Then by Proposition 6, we have

E[AB] ≤
√

E[A2] E[B2]

E[AB]2

E[B2]
≤ E[A2]

E

[√∑T
t=1 ‖∇L(wt)‖2

]2

E[η−1
T]

≤ E

[
T∑
t=1

ηT ‖∇L(wt)‖2
]

This is a somewhat magical trick: by doing a little manipulation with Proposition 6, we are able to get an expression

in terms of E

[√∑T
t=1 ‖∇L(wt)‖2

]
, which does not have the ηT inside the expectation! So, continuing:

E

[√∑T
t=1 ‖∇L(wt)‖2

]2

E[η−1
T]

≤ ∆ +
Hc2 log

(
T (G2

L+σ2)
ε2

)
2

+
cGLG`
ε

E


√√√√ T∑

t=1

‖∇L(wt)‖2

2

≤

∆ +
Hc2 log

(
T (G2

L+σ2)
ε2

)
2

+
cGLG`
ε

E[η−1
T]

=

∆

c
+
Hc log

(
T (G2

L+σ2)
ε2

)
2

+
GLG`
ε

E


√√√√ε2 +

T∑
t=1

‖gt‖2



Now, to avoid carrying around too much algebra, let’s just define K = ∆
c +

Hc log

(
T (G2
L+σ2)

ε2

)
2 + GLG`

ε . Then, we can
write this as:

E


√√√√ T∑

t=1

‖∇L(wt)‖2

2

≤ K E


√√√√ε2 +

T∑
t=1

‖gt‖2



The next part of the proof is an important trick that frequently arises when analyzing adaptive algorithms: we are going

to use a self-bounding argument. The idea is that if we define X = E

[√∑T
t=1 ‖∇L(wt)‖2

]
, which is the quantity

that we are interested in bounding, we will try to obtain an expression of the form:

X2 ≤ f(X)

for some function f . Then, we will use the shape of the function f to argue that if X2 ≤ f(X), X cannot be too large.
Specifically, f(X) will eventually be a linear function, so we will have X2 ≤ aX + b, from which we can use the

7

quadratic formula to bound X . So far, we have obtained:

X2 ≤ K E


√√√√ε2 +

T∑
t=1

‖gt‖2

 (2)

So, now we need to find some way to seeX in the RHS of this expression. Our starting point is the identity ‖a+b‖2 ≤
2‖a‖2 + 2‖b‖2. To see this identity, observe ‖a + b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉, and then apply Young inequality
(Proposition 5) to bound 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2. From this, we have:

‖gt‖2 = ‖gt −∇L(wt) +∇L(wt)‖2 ≤ 2‖∇L(wt)‖2 + 2‖gt −∇L(wt)‖2

Next, we use the identity
√
a+ b ≤

√
a+
√
b. This can be seen by simply squaring both sides. Thus, we have:

K E


√√√√ε2 +

T∑
t=1

‖gt‖2

 ≤ K E


√√√√ε2 + 2

T∑
t=1

‖gt −∇L(wt)‖2 + 2

T∑
t=1

‖∇L(wt)‖2


≤ K E


√√√√ε2 + 2

T∑
t=1

‖gt −∇L(wt)‖2

+K
√

2 E


√√√√ T∑

t=1

‖∇L(wt)‖2


= K E


√√√√ε2 + 2

T∑
t=1

‖gt −∇L(wt)‖2

+K
√

2X

using Jensen inequality:

≤ K

√√√√ε2 + 2 E

[
T∑
t=1

‖gt −∇L(wt)‖2
]

+K
√

2X

≤ K
√
ε2 + Tσ2 +K

√
2X

So, now going back to equation (2), we have:

X2 ≤ K
√
ε2 + Tσ2 +K

√
2X

Now, by quadratic formula, we have:

X ≤ K
√

2 +
√

2K2 + 4K
√
ε2 + Tσ2

2

≤ K
√

2 +
√
K
(
ε2 + Tσ2

)1/4
≤ K
√

2 +
√
Kε+

√
KσT 1/4

Now, finally, recall our definition of X and use Cauchy-Schwarz to conclude:

X = E


√√√√ T∑

t=1

‖∇L(wt)‖2


≥ 1√

T
E

[
T∑
t=1

‖∇L(wt)‖

]
From which we can conclude:

1

T
E

[
T∑
t=1

‖∇L(wt)‖

]
≤ K

√
2 +
√
Kε√

T
+

√
Kσ

T 1/4

8

2.2 More refined analysis

The analysis we’ve presented has a somwhat poor dependence on ε: it is O
(√

σ√
εT 1/4

)
, which could be quite bad.

However, it is possible to obtain a more refined bound that does not have this poor dependence on ε. See [6] for a proof
that achieves this. Note their proof is along a slightly different lines: instead of bounding the (ηt−1−ηt)〈∇L(wt),gt〉
terms by using decreasing learning rates, as we did in Theorem 1, instead they carefully bound the gap |ηt−1 − ηt| to
show that each term is quite small.

3 Auxiliary technical results (also in notes 0)
Proposition 4 (Bias-variance Decomposition). Suppose X ∈ Rd is some random variable. Then for any deterministic
value Y :

E[‖X − Y ‖2] = ‖Y − E[X]‖2 + E[‖X − E[X]‖2]

Proof. Expanding the square we have:

E[‖X − Y ‖2] = E[‖X − E[X] + E[X]− Y ‖2]

= E[‖Y − E[X]‖2] + E[‖X − E[X]‖2] + 2 E[〈X − E[X],E[X]− Y 〉]
= ‖Y − E[X]‖2 + E[‖X − E[X]‖2] + 2〈E[X − E[X]],E[X]− Y 〉
= ‖Y − E[X]‖2 + E[‖X − E[X]‖2]

where

Another useful inequality is the Young inequality:

Proposition 5 (Young inequality). Suppose X and Y are arbitrary vectors. Then for any λ > 0 and any non-negative
real numbers p and q satisfying 1

p + 1
q = 1,

〈X,Y 〉 ≤ ‖X‖
p

pλp
+
λq‖Y ‖q

q

Proof. Notice that we must have both p and q at least 1 (otherwise 1/p + 1/q > 1, which is not allowed). Now,
differentiating the RHS with respect to λ yields:

−‖X‖
p

λp+1
+ λq−1‖Y ‖q

Differentiating again yields:

(p+ 1)
‖X‖p

λp+2
+ (q − 1)λq−2‖Y ‖q ≥ 0

where we have used q ≥ 1. Thus, we can find a minimum value for the RHS by setting the first derivative to 0. Solving
−‖X‖

p

λp+1 + λq−1‖Y ‖q = 0 for λ then gives λ = ‖X‖p/(p+q)
‖Y ‖q/(p+q) , which yields a minimum value of

‖X‖p−
p2

p+q ‖Y ‖
pq
p+q

p
+
‖Y ‖q−

q2

p+q ‖X‖
pq
p+q

q
=
‖X‖

pq
p+q ‖Y ‖

pq
p+q

p
+
‖Y ‖

pq
p+q ‖X‖

pq
p+q

q

Now, notice that

1 =
1

p
+

1

q
=
p+ q

pq

So that the minimum of the RHS simplifies to:

‖X‖‖Y ‖
p

+
‖Y ‖‖X‖

q
= ‖X‖‖Y ‖

Now to conclude observe that 〈X,Y 〉 ≤ ‖X‖‖Y ‖ by Cauchy-Schwarz.

9

Finally, we will also often need the following generalization of Cauchy-Schwarz:

Proposition 6 (Cauchy-Schwarz for random variables). Suppose A ∈ R and B ∈ R are arbitrary random variables.
Then:

E[AB] ≤
√

E[A2] E[B2]

Proof. By Young inequality (Proposition 5), we have

E[AB] ≤ E[A2]

2λ2
+
λ2 E[B2]

2

for any λ > 0 . Now, set λ = E[A2]

E[B2] to conclude the desired result.

References
[1] Elad Hazan, Alexander Rakhlin, and Peter L Bartlett. “Adaptive online gradient descent”. In: Advances in Neural

Information Processing Systems. 2008, pp. 65–72.

[2] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimiza-
tion”. In: Conference on Learning Theory (COLT). 2010.

[3] Tim van Erven and Wouter M Koolen. “MetaGrad: Multiple Learning Rates in Online Learning”. In: Advances in
Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 3666–3674.

[4] Ashok Cutkosky and Francesco Orabona. “Black-Box Reductions for Parameter-free Online Learning in Banach
Spaces”. In: Conference On Learning Theory. 2018, pp. 1493–1529.

[5] Xiaoyu Li and Francesco Orabona. “On the convergence of stochastic gradient descent with adaptive stepsizes”.
In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 983–992.

[6] Rachel Ward, Xiaoxia Wu, and Leon Bottou. “AdaGrad stepsizes: Sharp convergence over nonconvex land-
scapes”. In: International Conference on Machine Learning. PMLR. 2019, pp. 6677–6686.

10

	Adaptive Gradient Descent
	Intuition for Adaptive Learning Rates

	Adaptive SGD Algorithm
	Convergence of Algorithm 1
	More refined analysis

	Auxiliary technical results (also in notes 0)

